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We investigate electron spin currents induced optically via plasmonic modes in the Kretschmann
configuration. By utilising the scattering matrix formalism, we take the plasmonic mode coupled
to external laser drive into consideration and calculate induced magnetisation in the metal. The
spatial distribution of the plasmonic mode is inherited by the induced magnetisation, which acts
as inhomogeneous effective magnetic field and causes the Stern-Gerlach effect to drive electron spin
currents in the metal. We solve spin diffusion equation with a source term to analyse the spin
current as a function of the spin diffusion length of the metal, the frequency and the incident angle
of the external drive.

I. INTRODUCTION

Electron spin is one of the fundamental physical quan-
tities, which can carries heat, angular momentum, and
even quantum information [1–6], and thus it is crucial
to control the electron spin by other excitations. It has
been reported that circulation or non-zero vorticity of
electric charge flow induce spin current in the metal [7–
9]. In these studies, they excited inhomogeneous effec-
tive magnetic field by the circulation or the vorticity to
bring about the Stern-Gerlach-type effect and drive the
electron spin transport. Keeping this idea in mind, we
consider optically driving electron spin current via plas-
monic modes in the Kretschmann configuration.

Recently, the spin current generation from light via
plasmonic modes have been studied [10–13]. In Refs.
[10, 11], they investigated spin current generation in
magneto-plasmonic systems at localised plasmon reso-
nance conditions, where the difference of the nonequilib-
rium distribution functions between magnons and plas-
mons is utilised as in the spin pumping and the spin
Seebeck effect [14, 15]. In our previous works [12, 13],
we proposed the angular momentum conversion from the
transverse spin of propagating surface plasmons (SPs) to
electronic systems, where the transverse spin circulates
electron gas to induce inhomogeneous magnetic field and
result in electron spin current in the metallic media.

However, to the best of our knowledge, it has never
theoretically investigated that the electron spin dynam-
ics in a plasmonic system where the plasmonic modes is
coupled to external laser drive. In this study, we calculate
the electron spin current induced optically in a trilayer
system.

We consider a metal film sandwiched by two different
dielectrics (FIG. 1). Let the permittivity of the metal εm
and those of dielectrics εa and εp (εa < εp). This layered
system is called the Kretschmann configuration which
is one of the typical systems to excite plasmonic modes
by a laser drive [16]. When the laser is incident on the
metal film from one dielectric side where the permittivity
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FIG. 1. Optically driven electron spin current in a tri-
layer system (Kretschmann configuration), where a metal
film (ε = εm) with a thickness of d is sandwiched by two
dielectrics, air (εa = 1) and prism (εp = 1.52). A laser
drive field is incident on the metal from the prism side, and
surface plasmon modes can be excited on the air-metal in-
terface when the incident angle exceeds the critical angle
(θin > θc ≡ arcsin

√
εa/εp). In the excited plasmonic modes,

the electric field is circulating, which induces orbiting mo-
tion of electron gas in the metal and results in inhomoge-
neous magnetisation. The electron spin experiences the Stern-
Gerlach effect under the magnetisation, and the electron spin
current is driven in the direction perpendicular to the air-
metal interface.

is higher than the other dielectric side, surface plasmon
modes can be excited above the critical angle condition
(θin > θc ≡ arcsin(

√
εa/εp)).

The excited plasmonic modes have exponential profile
and thus transversally spinning electric field in the metal
due to the spin-momentum locking effect of light in non-
paraxial regime [17–23]. When the frequency of the field
is smaller than the plasma frequency of the metal, the
highly confined spinning field induces the electron gas to
circulate, which generates the steep gradient of magneti-
sation. Although the magnetisation itself is so small that
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it is even difficult to detect as analysed in the previous
studies [24, 25], its gradient can be large enough to drive
electron spin transport [12, 13].

II. MAGNETISATION INDUCED BY
PLASMONIC FIELDS

To investigate the electron dynamics in the plasmonic
field, we firstly calculate the electromagnetic field by a
scattering matrix formalism, and evaluate magnetisation
induced by the field in the metal. Once we obtain the fre-
quency dependence, the incident angle dependence, and
the spatial distribution of the magnetisation, the diffu-
sive dynamics of electron spin can be calculated from spin
diffusion equation with a source term [26, 27].

A. Scattering matrix formalism for a multilayer
system

Our trilayer system has translational invariance in x
and y direction, and it is convenient to use wavenumber,
kx and ky, as parameters in the Maxwell equations rather
than x and y. Also, we work in the frequency domain
(i.e., use ω rather than t) to have a wave equation,[

− ∂2

∂z2
−
(
ω2

c2
ε− k‖2

)]
E(k‖, ω) = 0. (1)

Here, we have used

k‖ =

(
kx
ky

)
, k‖ =

√
kx

2 + ky
2.

We solve Eq. (1) in each layer to get the electric field,
and substitute it into

H(k‖, ω) =
1

ωµ0

 kx
ky

−i
∂

∂z

×E(k‖, ω) (2)

to calculate the magnetic field. Here, µ0 is the perme-
ability of vacuum.

The electromagnetic field should satisfy the boundary
conditions of the Maxwell equations, kx

ky

−i
∂

∂z

 ·E(k‖, ω) = 0,

 kx
ky

−i
∂

∂z

 ·H(k‖, ω) = 0.

(3)

Under these conditions, two kinds of polarisation are pos-
sible solution of the vector wave equation (1). We define
those two polarisation vectors,

eλσ =


kσ × kσ × uz

|kσ × kσ × uz|
λ = p,

kσ × uz

|kσ × uz|
λ = s,

(4)

FIG. 2. Electromagnetic field in each layer is expanded by
the eigenmodes as in (6) and (7). We set the amplitudes of
the fields with a polarisation of λ = s, p in the prism, metal,
and air layers Ep,m,aλσ , respectively, where σ = ± specifies
the direction of the z components of the wavevectors. The
permittivity in each layer is εa,m,p. The frequency ω and
the wavenumber in the direction parallel to the interfaces
k‖ (|k‖|2 < ω2εp/c

2) are free parameters. We impose the
field continuity (boundary conditions) at z = ±d/2 in order
to derive simultaneous equations determining the scattering
matrix of this trilayer system (9).

where

kσ(k‖, ω) =

(
k‖

σK(k‖, ω)

)
, K(k‖, ω) =

√
ω2

c2
ε− k2

‖.

(5)

Here, K(k‖, ω) is the wavenumber in the z direction, and
σ = ± specifies the propagation direction (i.e., σ = ±
means that the wave propagates in the ±z direction).

In terms of the polarisation vectors, the electric and
magnetic field in each layer can be written as

E(k‖, ω) =
∑
λσ

elλσe
iσKlzElλσ, (6)

H(k‖, ω) =
1

Z0

∑
λσ

√
εle

l
λ̄σe

iσKlzElλσ, (7)

where Z0 =
√
µ0/ε0 is the impedance of free space, and

ε0 is the permittivity of vacuum. Also, l = a,m, p spec-
ifies a medium in which the field lives, air, metal or
prism layers, and Elλσ is the modal amplitude of the field
with given polarisation and propagation direction in each
layer. Note that we here have defined p̄ = s and s̄ = p.

Let us take the coordinate so that the wavevector lies
in the xz plane (kx = k, ky = 0), and fix λ = p. This is
because we are interested in plasmonic excitations, and
there is no SPs excited by the s polarisation. Then, we
have

elpσ =
c/
√
εl

ω

σKl

0
−k

 , elsσ =

 0
−1
0

 . (8)
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Now, we are ready to derive the scattering matrix of
our system. Imposing the continuities of the tangential
fields, Ez and Hy, at the two interfaces (z = ±d/2), we
can obtain simultaneous equations in the matrix form,

S−1ψout = ψin (9)

where the scattering matrix of our system is defined by

S−1 =


−
Ka√
εa
e+iKad/2

Km√
εm
e+iKmd/2 −

Km√
εm
e−iKmd/2 0

−√εae+iKad/2
√
εme

+iKmd/2
√
εme

−iKmd/2 0

0
Km√
εm
e−iKmd/2 −

Km√
εm
e+iKmd/2

Kp
√
εp
e+iKpd/2

0
√
εme

−iKmd/2 √
εme

+iKmd/2 −√εpe+iKpd/2

 , (10)

and output and input vectors,

ψout =


Eap+
Emp+
Emp−
Epp−

 , ψin =


0
0

Kp
√
εp
e−iKpd/2

√
εpe
−iKpd/2

Epp+. (11)

The 2 × 2 block matrices in the diagonal entries of S−1

contain the information of plasmonic modes. Indeed, the
determinant of the left top block matrix returns the stan-
dard dispersion relation of the SP mode at the air-metal
interface [16],

det

− Ka√
εa
e+iKad/2

Km√
εm
e+iKmd/2

−√εae+iKad/2
√
εme

+iKmd/2

 = 0,

Km/εm

Ka/εa
= −1, (12)

whereas that of the right bottom block matrix returns
the dispersion of the SP mode at the metal-prism,

det

− Km√
εm
e+iKad/2

Kp
√
εp
e+iKpd/2

−√εme+iKmd/2 √εpe+iKpd/2

 = 0,

Km/εm

Kp/εp
= −1.

From (9), we can derive the amplitudes of the electric
and magnetic fields in the system excited by the given
input (see FIG. 3). Here, we use the Drude free electron
model for the permittivity of the metal,

εm = 1− ωp
2

ω2
. (13)

We can define the incident angle such that

k =
ω

c

√
εp sin θin, Kp =

ω

c

√
εp cos θin. (14)

In other words, the incident angle is given by

θin = arctan

(
k

Kp

)
. (15)

When the incident angle is below the critical angle (θin <

θc ≡ arcsin
√
εa/εp), the incident field is transmitted into

the other side as in the FIG. 3a. In this case, there is
no excited SP mode. On the other hand, if the incident
angle exceeds the critical angle, then the SP mode can
be excited under wavenumber matching condition,

ω

c

√
εp sin θin = ksp(ω),

θin = arcsin

[
ksp(ω)

ω
√
εp/c

]
≡ θsp, (16)

where ksp(ω) can be determined by solving the dispersion
relation (12) for the wavenumber k. In FIG. 3c, the SP
mode excitation at the wavenumber matching condition
(16) is shown. While the field in the air layer has uniform
spatial distribution in the critical incidence case (θin =
θc) shown in FIG. 3b, the field is compressed at the air-
metal interface at the wavenumber matching condition.

B. Inhomogeneous induced magnetisation

With the modal amplitudes calculated by the scatter-
ing matrix method in the previous part II A, we can de-
rive the angular momentum (AM) density of electron gas
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FIG. 3. The field distribution in the trilayer system. The metal region (−d/2 ≤ z ≤ d/2) is indicated by the dashed grey lines.

(a) The incident angle is smaller than the critical angle between the prism and the air layers (θin < θc ≡ arcsin
√
εa/εp). We can

confirm that the incident field is decay in the metal layer and transmitted into the other side. (b) The critical angle incidence
θin = θc. At the critical angle, the electromagnetic field in the air layer is single plane wave, and the magnetic field distribution
is uniform in the z direction. (c) The incident angle is SP angle θsp at which the x component of the incident wavevector is
matched with that of the SP. It is clear that the SP is excited at the interface between metal and air layers. The electromagnetic
energy of the SP is compressed at the interface, and the field has exponential profile in the air region unlike the plane wave at
the critical angle. In order to generate these plots, we set the incident frequency ω = ck0 = 2.88×1015 Hz (k0 = 2π/655 nm−1),
the incident amplitude Epp+ = 1.0 V/m, and ωp = 2π × 2.1× 1015 Hz (the plasma frequency of gold).

in the metal in terms of the electric field [12, 13, 25],

Sel =
1

4
ε0
dε

dω
Im (E∗ ×E) (17)

=
1

2

kIm (Km)

ω2εm/c2
dεm
dω

ε0
∑
σ

σ|Empσ|2e−2σIm(Km)zuy

(−d/2 ≤ z ≤ +d/2). (18)

By simply multiplying the AM of the electron gas by the
gyromagnetic ratio γ = e

2m , we can evaluate the mag-
netisation induced by the angular motion of the electron
gas,

M =
1

2
γ
kIm (Km)

ω2εm/c2
dεm
dω

ε0
∑
σ

σ|Empσ|2e−2σIm(Km)zuy.

(19)

In FIG. 4, the induced magnetisation as a function of
the incident field parameters, ω and k. Since the incident
angle should be smaller than 90◦, the wavenumber in the
x direction is limited as

k ≤ ω

c

√
εp. (20)

Also, note that any excitations cannot go beyond the
light line (ω ≤ ck). Therefore, the induced magnetisation
which can be excited in the Kretschmann configuration
is only between the two diagonal dashed lines in FIG. 4.
There is a peak in the region, which is contribution from
the surface plasmon mode at the air-metal interface. If
we replot the induced magnetisation as a function of the
incident angle for a given incident frequency (FIG. 5), we
can clearly see that there is a peak at the SP angle for a
frequency of ω = 2πc/(655× 10−9) = 2.88× 1015 Hz,

θsp = arcsin

√
εm

εa + εm
≈ 43◦.

0

1.×10-9

2.×10-9

3.×10-9

4.×10-9

5.×10-9

FIG. 4. Magnetisation at the metal surface z = +d/2 in-
duced by the plasmonic modes as a function of the wavenum-
ber in the x direction and the frequency of the incident field.
We can see two peaks in this colormap. This is because there
are two types of plasmonic excitations in our system. One
is the SP at the air-metal interface which mainly contributes
to the upper peak. The other is the SP at the metal-prism
interface, contributing to the lower peak. The light dispersion
in the air and prism, ω = ck/

√
εa and ω = ck/

√
εp, and the

surface plasma frequencies at the two interfaces, ωp/
√

1 + εa
and ωp/

√
1 + εp, are indicated by dashed lines. In this fig-

ure, we set Epp+ =
√
Z0 × 100 mW/cm2 ≈ 0.62 × 103 and

ωp = 2π × 2.1× 1015 Hz (the plasma frequency of gold), and
we defined kp ≡ ωp/c. Note that we set the upper bound of
this plot range at 0.5 µA/m because the peaks are so large
that other data become invisible if we plot the full range.
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FIG. 5. Induced magnetisation at the metal surface z =
+d/2 as a function of the incident angle. It is clear that
it peaks at the SP angle incidence (θin = θsp ≈ 43◦). We
set the incident frequency ω = ck0 = 2.88 × 1015 Hz (k0 =
2π/655 nm−1), and all other parameters are the same as the
previous figures.

III. DIFFUSIVE ELECTRON SPIN DYNAMICS
IN THE METAL

In this section, we analyse the electron spin dynamics
in the inhomogeneous magnetic field by using the spin
diffusion equation. As discussed in the literature [26, 27],
we need a source term in the diffusion equation to take
two kinds of processes, spontaneous diffusion and induced
diffusion, into consideration,(

∂

∂t
−Ds∇2 +

1

τ

)
δµ = ρ0eDs∇ · jsou

s , (21)

where our source term is given by the gradient of the
inhomogeneous magnetisation,

jsou
s =

~µ0

mρ0
∇My. (22)

Here, Ds = λs
2/τ is the diffusion constant, λs and τ are

the spin diffusion length and the spin relaxation time in
the metal, and ρ0 is the resistivity of the metal. Spin
accumulation δµ is a potential for the electron spin, and
its gradient drives electron spin currents, js ∝ ∇δµ.

At the steady state (∂/∂t = 0), we obtain the space
evolution equation of the spin accumulation,

∇2δµ =
1

λs
2 δµ+

~e
m
µ0∇2My. (23)

There are two characteristic lengths in this equation.
One is the spin diffusion length λs, which characterises
the spontaneous diffusion process. The other is the pen-
etration length of the plasmonic mode Im(Km), which is
hidden in the gradient operator in front of the magnetisa-
tion My, and characterises the diffusion process induced
optically.

The particular solution of this inhomogeneous differ-

ential equation is

δµsp =
∑
σ

Aσe
−2σIm(Km)z, (24)

Aσ = σ
2kIm(Km)

ω2εm/c2
L(k, ω, λs)γµBµ0

dεm
dω

uσ(k, ω),

(25)

where γ = e
2m is the gyromagnetic ratio, µB = e~

2m is the
Bohr magneton, and we have defined

L(k, ω, λs) =
{2Im(Km)λs}2

{2Im(Km)λs}2 − 1
, (26)

uσ(k, ω) = ε0|Empσ|2. (27)

On the other hand, the general solution of the corre-
sponding homogeneous equation is

δµ0 =
∑
σ

Bσe
−σz/λs . (28)

When the two characteristic lengths are comparable,
the factor L(k, ω, λs) becomes large and its sign can be
flipped.

The coefficients, Bσ, are determined by the boundary
condition that the derivative of the total spin accumula-
tion (i.e., the diffusive spin current) vanishes at the two
boundaries,

0 = ∇δµ|z=±d/2 = ∇(δµ0 + δµsp)
∣∣
z=±d/2 . (29)

This yields simultaneous equations,(
e−

d
2λs −e+ d

2λs

e+ d
2λs −e−

d
2λs

)(
B+

B−

)
= 2Im(Km)λs

(
−e−Im(Km)d e+Im(Km)d

−e+Im(Km)d e−Im(Km)d

)(
A+

A−

)
,

and then, we get(
B+

B−

)
= −λs

d

X + Y

sinh(X − Y )

(
sinhX sinhY
sinhY sinhX

)(
A+

A−

)
,

(30)

where we have defined

X =
d

2λs
{2Im(Km)λs + 1},

Y =
d

2λs
{2Im(Km)λs − 1}.

Finally, we get the spin accumulation,

δµ =
∑
σ

Aσe
−2σIm(Km)z +Bσe

−σz/λs , (31)

and the spin current driven by the spin accumulation,

js =
1

ρ0e
∇δµ (32)

= − 1

ρ0e

∑
σ

σ
(

2Im(Km)Aσe
−2σIm(Km)z

+
1

λs
Bσe

−σz/λs
)
uz. (33)
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(a) js(ω, θin, λs = 10 nm) (b) js(ω, θin = θsp, λs) (c) js(ω = ωsp/2, θin, λs)

FIG. 6. Optically generated spin current js at z = 0 in the Kretschmann configuration. (a) colormap of js as a function of
the incident frequency ω and the incident angle θin for a fixed spin diffusion length λs. The grey dashed line indicates the SP
angle θsp(ω). We can see that the peak of the spin current density is around the dashed curve, which implies the spin current is
driven by the SP. The sign of the spin current is flipped, and the peak slightly deviate from the SP angle condition around the
right top region, where the spontaneous diffusion dominates over the induced diffusion. (b) colormap of js as a function of the
incident frequency ω and the spin diffusion length λs at the SP angle incidence θin = θsp. (c) colormap of js as a function of
the incident angle θin and the spin diffusion length at a given frequency. To generate these plots, we set ρ0 = 12.8× 10−8 (the
resistivity of gold), and other parameters are the same as the previous figures. Note that we set the upper and lower bounds
of the plot ranges −10 mA/m2 and 10 mA/m2 so that the peaks can be seen clearly.

In FIG. 6, the spin current is shown as a function of the
incident frequency ω, the incident angle θin, and the spin
diffusion length of the metal λs. From FIG. 6a, we can
see that the spin current peaks around the SP angle inci-
dence. The peak deviates from the SP angle condition at
high frequency region. This is because the decay length
of the SP Im(Km) and the spin diffusion length λs are
comparable in that region, and the spontaneous diffusion
become comparable with the induced diffusion. Besides,
we can observe the resonant response and the polarisa-
tion of the spin current is flipped there because the sign
of the factor L(k, ω, λs) is flipped. We can also confirm
the sign flip of the spin current both when it is plotted as
a function of the incident frequency and the spin diffu-
sion length and when plotted as a function of the incident
angle and the spin diffusion length (see FIGs. 6b and 6c).

IV. CONCLUSION

To sum up, in this work, we have calculated a plas-
monic system coupled to external laser drive where elec-
tron spin currents are generated.

In order to perform the analysis of electromagnetic
field in the system, the scattering matrix formalism is
utilised. Using the data provided by the field analysis, we

calculated magnetisation induced by plasma oscillation
in the metal. Since the magnetisation inherits the fre-
quency dependence, the incident angle dependence, and
the spatial distribution from the plasmonic modes, it acts
as inhomogeneous effective magnetic field which peaks at
a condition where the surface plasmon mode is excited
by the external drive and causes the Stern-Gerlach effect
to generate electron spin current.

We have also solved spin diffusion equation to analyse
the spin current in detail. There are two kind of diffusion
process. One is the spontaneous diffusion which is char-
acterised by the spin diffusion length of the metal. The
other is induced by the plasmonic modes whose charac-
teristic length is the penetration length of the electromag-
netic field. When these two characteristic length match,
the spin diffusion is resonantly enhanced and the polari-
sation of the spin current is flipped.

Our theoretical studies here are feasible for experimen-
tal demonstration and commit to further research on the
interface between optics and spintronics.
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